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Self-similar flow patterns are studied which arise when a cylindrically symmetric 
strong shock or detonation wave propagates outwards into a gas at  rest in which 
the ambient density varies as the inverse square of the distance from the axis of 
symmetry alongwhich flow saline current of either zero or finite constant strength. 
The electrical conductivity of the gas on either side of the wave is supposed per- 
fect and the discontinuities discussed are either gasdynamic or magnetogas- 
dynamic in nature. It is shown that self-similar solutions exist for piston driven 
gasdynamic detonation and shock waves. Whilst no self-similar solutions may 
occur for magnetogasdynamic detonation waves, it is demonstrated that 
magnetogasdynamic shock waves do possess such solutions for which detailed 
flow patterns are presented. 

1. Introduction 
The occurrence of self-similar flows in gasdynamics is well established (see, 

for example, Sedov 1959) and in this paper related problems with discontinuous 
waves in magnetogasdynamics are studied. The basic configuration investigated 
is that which arises when an azimuthal magnetic field is generated by a current of 
finite, constant strength passing along a straight wire of infinite length and either 
a shock or detonation wave propagates with uniform speed outwards from the 
wire into the ambient undisturbed gas at rest. The electrical conductivity of the 
gas on either side of this wave is supposed perfect. The line current may or may 
not be switched on. The discontinuity is thus either magnetogasdynamic or 
simply gasdynamic. The model clearly possesses cylindrical symmetry and it is 
shown that, in the more general case when a detonation wave is propagated, 
equations of self-similar flow may be established in a certain domain provided 
that the ambient density varies as the inverse square of the distance from the 
wire and the ambient pressure ahead of the wave is sufficiently small to be 
neglected compared with that behind. In  order that a comparison may be made 
between the various types of model this initial distribution of density and pressure 
is preserved throughout, although it is not essential in all cases. Furthermore, 
the usual description of a detonation wave is used (see, for example, Helliwell 
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1963), which in view of the above remarks concerning the pressure must be a 
strong detonation, consisting of a single discontinuity in the flow at which 
exothermal energy is released. 

A related self-similar problem has been studied by Cole & Greifinger (1962) 
who investigated the propagation of a magnetogasdynamic cylindrical blast 
wave into a uniform region of gas permeated by an azimuthal magnetic field 
generated by a constant line current along the line source of the blast wave. It was 
found that for a finite energy release the presence of the magnetic field had only 
a slight influence upon the shock speed, velocity and density distribution, whilst 
the pressure distribution differed markedly from that in the analogous pure 
gasdynamic model. These results are in general agreement with those of Green- 
span (1  962) who carried out similar investigations into the propagation of blast 
waves across which there occurs a jump of electrical conductivity. We derive 
similar results for the model appropriate to a magnetogasdynamic shock wave 
analyzed in detail in the present paper. Greenspan has also remarked that " the 
existence of a similarity variable and consequent development of a system of 
ordinary differential equations does not in itself imply the existence of a physic- 
ally acceptable solution satisfying all the prescribed boundary conditions ". 
This is indeed the case for the present class of problems. We show that no self- 
similar solution is possible for magnetogasdynamic detonation waves, and only 
piston driven solutions are possible for gasdynamic detonation waves, all pro- 
pagating into regions in which the density falls off as the inverse square of the 
distance from the axis of symmetry. 

In  a sequel to the study reported here, a subsequent paper will present the 
results of investigations into the related problems associated with the propaga- 
tion of ionizing shock and detonation waves for which a jump of electrical con- 
ductivity from zero ahead to infinity behind occurs across the wave. 

An application of the present work arises in the theory of initiation in explosives 
by the use of bridge wires. Additional applications may be found in astrophysics 
in connexion with shock waves in interstellar gas clouds. 

2. Self-similar formulation 
The fundamental equations governing the continuous flow of a perfect, in- 

viscid gas with infinite electrical conductivity are well established; see, for 
instance, Ferraro & Plumpton (1961). In  the class of the problem under in- 
vestigation in which either a shock or detonation wave propagates outwards with 
cylindrical symmetry about. a rectilinear current of constant strength I ,  it is 
clearly convenient to use cylindrical polar co-ordinates where r is the radial 
distance from the line current which is taken to pass in a positive sense along the 
axis of symmetry. Then, using rationalized M.K.S. units, the equations which 
express the conservation of mass, momentum, energy and magnetic flux in the 
continuous region behind the wave are, respectively, 

-+- aP a (pv)+- P" = 0, 
r at ar 
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av av l a p  a -+v-+--+- - ( r z )  = 0, 
at ar par pr ar 

a a 
- at (pp-7) + Op-7) = 0, 

a z  a 
-+-(?I&) = 0. at ar (2.4) 

Here, p is the pressure, p the density, v the radial velocity, 2 the azimuthal 
magnetic field, y the adiabatic gas index, ,a the magnetic permeability, t the 
time, and r is defined above. 

The basic jump conditions across a discontinuous wave in magnetogasdynamics 
have been given in general by Helliwell & Pack (1962) without restriction upon 
the electrical conductivity on either side of the wave. With the quantities referred 
to the fixed cylindrical co-ordinate system, and y ,  p supposed constant through- 
out, these are 

P A C  - vuz) + P l C ,  

E2+pcUi", = El+@%, (2 .8 )  

where subscripts 1 and 2 refer to upstream and downstream conditions res- 
pectively, E is the electric field, c is the wave speed and the gas is supposed a t  
rest upstream. In the case of a shock wave 0 = 0, but for a detonation wave Q 
is the exothermal energy per unit mass released at the wave front. In  addition 
to this set of equations must be added further relationships whose form depends 
essentially upon the assumption that the gas everywhere has infinite conductivity. 
Thus in order that infinitely large currents do not develop, it is required from 
Ohm's law that, downstream, 

E ~ + ~ v S S ~  = 0, 

whilst upstream a similar argument leads to the requirement that 

(2 .9 )  

E l=  0.  (2.10) 

The formulation of the problem is completed by the specification of the con- 
ditions upstream of the discontinuous wave. It has already been assumed that 
the gas in this region is at  rest, so that the remaining quantities which call for 
consideration are p l ,  p1 and Z1, where in view of the axial current, I ,  one has 

Sl = I / 2 m .  ( 2 . 1 1 )  

Now if it is to be possible for a self-similar solution to exist then, of the set of 
dimensional parameters which determine the flow, only two may be dimension- 
ally independent. In  the present class of problem, let us suppose that the up- 
stream density varies inversely as some power of the distance from the axial 
current, so that (2 .12)  p1 = 

45-2 
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Then it will be observed that, since y is dimensionless and p always arises com- 
bined with S2 multiplicatively, the basic dimensional parameters are p l ,  pol 
p12 and 8 together with the wave speed c .  Further since [ ,us2]  = b], it follows 
that [pl] = ML-’TP2, [pol = ML0-3, 

[p12] = MLT-2, [&I = L2T-2, [c]  = LT-l. 

Thus, in the general case when a and 1 are both non-zero a self-similar flow 
pattern may be possible only when w = 2 and p 1  = 0. It should be noted that a 
non-uniform upstream pressure is unable to be supported as it would infringe 
the momentum equation (2.2) in the region ahead of the wave. Further the neglect 
of the upstream pressure is equivalent to the supposition that the quantity 
(plr2/c2po) is both small and uninfluential, an assumption which is clearly not valid 
for all space. The solution is consequently restricted to a domain r < (c2p,/pl)t, 
a restriction which applies equally to the earlier work of Cole & Greifinger and 
Greenspan. Assuming this condition satisfied we restrict further consideration 
to the situation when the ambient density varies as the inverse square of the 
distance from the axial current and the discontinuous wave is sufficiently 
strong for the upstream pressure to be neglected compared with that downstream. 
It follows therefore that the two independent dimensional parameters A and B, 
which arise, may be taken with the dimensions 

[A]  = MtLiT-l, [B] = LT-l, (2.13) 

and a similarity variable, A, may be defined by 

A = -  Pr 
Bt ’ (2.14) 

where /3 is a dimensionless constant. Then the velocity, pressure, density and 
magnetic field may be written in terms of corresponding non-dimensional 
functions of A. Thus 

r 
t 

v = - YfA), (2.15) 

Finally, let us suppose that the position co-ordinate of the discontinuous 
wave front is r = r*, at which h = A*. Then P may be chosen so that A* = 1, 

r* = BtlP, (2.16) and from (2.14) we have 

so that (2.17) 

Hence the wave speed is constant for the class of self-similar solution under 
investigation. 

In  the case of detonation waves it is convenient to choose 

A = p ic ,  B = @, (2.18) 

so that, from equations (2.14) and (2.17), the similarity variable is given by 

(2.19) 
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However, in the case of shock waves for which Q = 0, one must choose instead 

A = p o c ,  4 B = c ,  (2.20) 

so that, since from (2.17) it follows that /i' = 1, one has 

r 
A = - .  

Ct 
(2.21) 

The equations governing the flow may now be written in non-dimensional 
form. 

The use of the transformation (2.14) and substitution from (2.15) into (2.1)- 
(2.4) leads to a set of ordinary differential equations, governing the continuous 
flow behind the discontinuous wave, which may be written 

(2.22) 

(2.23) 

(2.24) 

(VH)'-H'  = 0, (2.25) 

where the prime denotes differentiation with respect to A. The equations are valid 
in the inteval0 < h < 1. 

In  a similar manner, from the equations (2.5)-(2.12) one may derive the di- 
mensionless form of the jump relations across the shock or detonation wave. 
These relate the values of H ,  P,  R and V a t  h = 1, upstream and downstream, of 
which the latter provide a set of boundary conditions for (2.22)-(2.25). We 
find, upstream, 

H = -  d(p)' , P, = 0,  R, = 1, V, = 0. (2.26) 
2 4 P o  

Immediately downstream of the discontinuous wave it follows that 

B2(l-K) = 1, (2.27) 

(2.28) R2( 1 - + 2'2 + &Hi = 1 + $H2,, 

HZ(1-&) = HI. (2.30) 

In  addition, it should be noted that the equations for a purely gasdynamic 
problem in the absence of the axial current are derived from the system (2.22)- 
(2.30) by setting H = HI = H2 = 0 throughout. 

Before leaving this section it is useful to establish two further results which 
will be found of importance in the further development of solutions. At a piston 
face the piston speed is identical with that of fluid particles in contact, so that 

v =  1. (2.31) 
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Furthermore, the speed of propagation of a magneto-acoustic wave front 
is given by the slope of the characteristics in the (r ,  t )  plane of the fundamental 
equations (2.1)-(2.4).  Hence, after substitution from (2.15) one finds that a 
magneto-acoustic wave front occurs in the gas where 

R(1- V)' = y P + H 2 .  (2 .32)  

3. The equations of continuous flow 
The equations of continuous flow comprise the set (2.22)-(2.25).  Three 

integrals, corresponding to conservation of mass, magnetic flux and energy be- 
tween two similarity surfaces h = constant, may be obtained as described by 
Sedov (1959),  or, as here, by simple manipulation of the governing equations. 

H (  1 - V )  = constant = a. (3 .1 )  

Equation (2 .25)  integrates directly to yield 

This expresses conservation of magnetic flux. 
Next, after division by h(1- V ) ,  (2 .22)  becomes separable and integration 

followed by an application of the condition (2 .27)  at h = 1 leads to the mass 
integral in the form 

R ( 1 -  7)  = h2. 

The energy integral may be obtained similarly. First, add &RV2 times (2 .22)  
and RV times (2 .23) .  Next derive the sum of y times (2 .22)  and (2 .24) .  Then, 
by addition, one obtains an equation which by means of (2 .25)  may be shown to 
be exact and to possess an integral which by the use of (3 .1 )  and (3 .2)  may be 
written 

y - l  ( 2 b ( l -  V)2+ V2[A2(1- V)2-a21>. (3 .3 )  2 ( y V -  1 ) ( 1 -  v2 P =  

A single ordinary differential equation for V = V(h)  may now be obtained 
from the addition of (2 .23)  and (2 .24)  multiplied respectively by R(1- V )  and 
P .  One derives, following further application of (3.1) and (3 .2)  the governing 
equation 

dh2 -- h2{2(yV-1) [h2(1 -  V ) 3 - a 2 ] - y ( y - 1 ) [ 2 b ( l -  V)2+ V2{h2(1 -  V ) z -  a 2 >I> 
dV - (7 V -  1) ( ( y  - 1 )  [2b( 1 - V)'+ Y2(h2( 1 - V)' -a2)] - A2V( 1 - V)3> 

(3 .4 )  
Clearly the solution is dependent upon the values of the constants a and b, 
which are themselves dependent upon the type of discontinuous wave which 
is studied. Qualitative information concerning possible flow patterns may be 
obtained from a study of the integral curves of (3 .4) .  In  what follows it will be 
found that these curves are very sensitive to the values of a and b which for the 
class of problem under investigation are such that a; 2 0, b 6 0. 

Finally it should be noted that the locus of magneto-acoustic wave fronts in 
the (As, V )  plane is given from (2.32) by eliminating R, P and H through the use 
of (3.1)-(3.3). One finds 

2 ( y V -  l ) [ h 2 ( 1 -  V ) 3 - a 2 ] - y ( y - l ) [ 2 b ( l -  V)2+ V2(h2(l-  V)2-a2}]  = 0, (3 .5 )  
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which is clearly a locus of extrema on the integral curves of the governing 
equation (3 .4) .  

4. The shock relations 
Consider the jump relations across the magnetogasdynamic wave as given by 

(2.27)-(2.30). From the fist of these, since R, 2 0, it follows that 0 < V ,  < 1 .  
The elimination of H2, P, and R, between the full set of equations then leads to a 
cubic equation for V,, which may be written in the form 

P( V ,  HI, &) (y  + 1) V3 - (y + 3 )  V 2  + 2V + { (y V - 2)  QH2, + 2 ( y  - 1) ( V -  1)& = 0, 

(4.1) where the subscript 2 on V, has been omitted. 
Now, since for all non-zero (H,,&) the function P is positive or negative 

according as V-t  +co respectively, whilst P < 0 at both V = 0 and V = 1, 
it follows that the cubic equation has at  least one real root greater than unity 
and either two real roots or none less than zero. It should also be noted that both 
P'(1, H,, &) and P'(0, H,, &) are positive if H, < 1, where the prime denotes 
differentiation with respect to V .  Thus, since we have already observed that 
to be physically realistic the roots must lie in (0, l), it  follows that the cubic may 
have no negative roots. Further, from (2.27) and (2.28) one finds 

(p2 + $Hg) - V, = (+Hg, 
where the quantities in braces denote the total pressure on the downstream and 
upstream sides of the discontinuity. Therefore since, as has already been re- 
marked, the shock or detonation wave must be strong, one must choose the 
larger of the two roots in the range (0 , l ) .  In  this range P( V ,  H,, &) is a decreasing 
function of both H, and &, that is 

It is easily shown that if the cubic P( V ,  0, &) = 0 has real roots in 0 < V < 1, 
then 1 

Q < 2 m 9  (4.3)  

whilst the cubic F( 8, H,, 0) = 0 has real roots in the same range if 

H, < 1. (4.4) 

Note that this last condition implies that the shock speed is greater than the 
Alfv6n speed at  the wave front. Then in view of the relations (4 .2)  it follows that 
for physically realistic roots of the cubic equation (4.1) to occur, the inequalities 
(4 .3)  and (4 .4 )  give rough upper bounds for & and HI respectively. 

Suppose that the turning points of the cubic equation (4.1) viz., the roots of 
the quadratic equation 

are a and p. Then 
p ' (V ,  Hl, &) = 0 (4.5) 

2 ( 3 + y ) - Y H 3 ,  ap = 2{1 -H2,+&(y- 111 
a+p = 3 ( y +  1) 3(Y + 1) 

2 
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both of which are positive, since H: < 1. Hence both turning points of the cubic 
equation (4.1) lie in V 2 0, and further, since (a+P) < 2 at least one of these is 
in the range ( 0 , l ) .  However, P'(1, H, Q) > 0, so that both turning points must 
lie in ( 0 , l ) .  Thus, of the real roots of the cubic equation (4.1) one always exists 
greater than unity whilst two others arise in the range (0 , l )  provided that 

p(a> Hi, Q) .p(P, Hi, Q) G 0, (4.6) 

where the equality is restricted to the case of two coincident roots. After con- 
siderable algebra this condition may be written in the form 

8(y2- 1 ) ( y -  l )2Q3-(y-  1)2{y2Hf-4(5y2-6)H:-4(2y2-3)}&2 

- 2(y - 1) (~'(7 - 1)H! - 3(y3 - y 2  - + 4)Hf + 3(y3 - y2 - 27 - 4)H: 

- (y - 1) ( 7 2  - 3))Q - {y2H! - 2(2y2 - y - 4)Hf + 3(2y2 - 2y - 5)Hf 

-2(2y'--y-3)HI+(y-l)')  < 0. (4.7) 

By setting either HI = 0 or Q = 0 the conditions (4.3) and (4.4) are recovered 
as special cases of the general result. Provided that values of HI and Q are chosen 
which satisfy the inequality (4.7), (4.1) has three real roots the middle one of 
which gives an acceptable solution for & appropriate to strong shock or detona- 
tion waves. It then follows from (2.27)-(2.30) that 

1 
R2 = __ 

l - V , )  

Hl 
2 -  1 - K '  

H -- 

&{2(1-&)2-H:(2-&)) 
Pz = 

2(1 -&)2 

(4.9) 

(4.10) 

The constants a and b which arise in the integrals of the equations of continuous 
flow may now be determined. The constant a is defined in (3.1) by 

a = H2(1 -&), 

which by the use of (4.9) becomes 

a = HI. (4.11) 

Also from the insertion of the expression for P2 from (4.10) into the integral (3.3), 
since V, satisfies a( V ,  H,, &) = 0, one obtains, after simplification, the result 

b =  -Q. (4.12) 

The case of a gasdynamic wave is obtained as a special case of the above results 
by setting H, = 0. In particular one finds that for a strong discontinuity V, 
must be taken as the middle root of the appropriately modified equation (4.1)) 
where Q is subject to the condition (4.3). Hence 

(4.13) 
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so that, since Q is bounded, 
r+ l " "< -  1 2 

2 ' y + l  
(4.14) 

The various classes of wave and associated values of (a, b )  may thus be listed 
as follows: (i) a = 0, b < 0: gasdynamic detonation wave. (ii) a = 0, b = 0: 
gasdynamic shock wave. (iii) a > 0, b < 0: magnetogasdynamic detonation wave. 
(iv) a > 0, b = 0:  magnetogasdynamic shock wave. 

5. Gasdynamic detonation and shock waves 

a = 0 and b = -Q. If one puts 
Let us first consider the case of a pure gasdynamic detonation wave for which 

Y = h2/Q, x = V ,  

the governing equation (3.4) becomes 

_ -  dY - Y{2(YX- 1)(1 -X)Y-Y(Y- 1)(X2Y-2)) 
(yx- l){(y - 1) (x2y - 2) - xy(l-.)} . ax 

This has singularities in the finite part of the (x, y) plane at the points 

(5 .2 )  I- (a)  x = lly, t~ = 0; ( b )  x = l l ~ ,  y = 272; 

( c )  x = 1, y = 2; (d )  x = 2/y,  y = y (y -  1). 

It is a straightforward matter to show that these four singularities are all simple 
and have the following characters: 

(a) saddle, ( b )  singular node, ( c )  saddle, (d )  spiral. 

The numerator of equation (5.1) is zero on y = 0 and 

(5.3) 

which, on comparison with equations (3.8) is seen to be the locus of acoustic 
wave fronts. For y > 1 the denominator of (5.3) is a positive definite form with 
minimum at x = l/y. Further, the denominator of equation (5.1) is zero onx = l/y 
and 

(5.4) 

which is positive for 0 < x < l/y. Hence, by the use of these results, one may 
obtain an accurate representation of the pattern of integral curves for equation 
(5.1). This is shown in figure 1. 

On these integral curves the initial point corresponding to conditions immedi- 
ately behind the detonation wave at h = 0 is x = V, = V,(Q), y = l/Q. This point 
lies above the singularity ( b )  if Q < l/(2y2) so that from (4.13) and inequalities 
(4.14) one finds 1/y < x < Z/(y + 1). Similarly, if this point lies below the singularity 
( b )  then l/(y+ 1) < x < l/y. Hence the initial point lies, within the ranges speci- 
fied, above and to the right or below and to the left of singularity (b ) ,  and a 
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solution is obtained by passage along an integral curve in the direction of de- 
creasing A. The locus of these initial points for varying Q may be expressed 
analytically in the form 

xy[(y+I)x-2]+2(y-l) = 0. (5 .5)  

This shock locus is shown in figure 1 superimposed upon the pattern of integral 
curves. 

J 

FIGURE 1. Gasdynamic detonation wave : integral curves. 
--- , acoustic locus; - - - , shock locus. 

Now every integral curve starting from a point below and t o  the left of (b )  
intersects the acoustic curve at which the sense of variation of h changes. Con- 
sequently there is no solution in such cases. An integral curve starting from a 
point above and to the right of ( b )  may intersect the acoustic curve, which, as 
before, gives no solution, or it may intersect the line V = 1, which corresponds to a 
piston path. Such integral curves would thus be associated with piston driven 
detonation waves. A further possibility is for the integral curve to enter and 
pass through the singularity (b )  in which case the solution would have a weak 
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singularity at that point, and the velocity, density and pressure would be eon- 
tinuous. However, whilst the velocity and density are unique at  (b) ,  the pressure 

Q ( Y - ~ ) ( x ~ Y - ~ )  
2WX-1) 

is given from (3.3) by 
P =  3 

which is undetermined there; its value depends upon the slope of the particular 
integral curve at entry into (b).  Indeed, if this slope be rn, then 

Q(Y - 1)  (4y3+m) 
2Y3 

P =  

Therefore any integral curve which starts above and to the right of ( b )  and enters 
(b)  before crossing the acoustic curve, necessarily passes subsequently below and 
to the left of (b)  and then crosses the acoustic curve thereby failing to yield an 
acceptable solution. The final possibility is for the integral curve to start from 
(b)  itself. However, in this case immediately behind the detonation wave one 
finds from (4.10) that P2 = V, so that from (5.7) and inequality (4.3) it follows 
that m > 0. Thus the integral curve must pass below and to the left of ( b )  and 
hence fail to provide a solution. 

It is of interest to note that there exists no self-similar solution for the Chap- 
man-douguet detonation wave, for the Chapman-Jouguet point lies at the 
intersection of the shock locus and acoustic locus, where V, = l / (y+ 1). This 
point is shown labelled J o n  figure 1 and lies below and to the left of the singularity 

From the above discussion one is led to the conclusion that only piston-driven 
detonation waves may have self-similar character in a pure gasdynamic model 
with an inverse square law of variation of ambient density. Acceptable solutions 
are given by integral curves of the type LM indicated in figure 1 which stem from 
points on the shock locus above S, the point of its intersection with the unique 
integral curve which enters the saddle point (c) and does not pass through the 
singularity (b) .  The location of S may be established numerically by integration 
from the singularity ( c )  along the limiting integral curve until the shock locus 
is intercepted. The outcome of such a calculation is to establish the range of 
values of Q for which self-similar solutions exist. For example, if y = Q one finds 
that piston driven waves exist provided that 0 < Q < 0.0438, correct to 3 signifi- 
cant figures. For given Q the details of the flow pattern between the piston and 
the detonation wave may now be established by a straightforward numerical 
integration of (5.1) from the shock point x = I/&, y = V,(Q) to the piston point 
x = 1. The solution is most usefully presented in terms of the ratios of the values 
of the field variables at a general point to their values immediately behind the 
detonation wave, expressed as functions of the proportional distance r/r* from 
the current axis to the wave front. In  terms of x,  y and Q these are given by 

(b).  

where V, = V,(Q) is expressed in (4.13), and, as before an asterisk denotes values 
at  the wave front. Furthermore, the piston speed, cp ,  is given in terms of the 
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, 0.5 

r/r* 

FIGURE 2 (a). Gasdynamic detonation wave : velocity distribution. 

- 
0.5 

r/r* 

FIGURE 2 (b). Gasdynamic detonation wave : density distribution. 

* 0.5 

R 
-9 

I I 
0.5 

r[r* 

FIGURE 2 (c). Gasdynamic detonation wave : pressure distribution. 
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detonation speed, c, by cp = (Qyp)*c, where yp is the value of y on the solution 
curve where x = 1. Complete solutions have been calculated, correct to 3 
significant figures, for y = Q and the values of Q (except Q = 0 and Q = 0.0438) 
listed, together with corresponding values of cp/c in table 1. The results are 
portrayed graphically in figures 2(a)-(c). 

Q C,/C Q CPlC 

0 0.554 0.03 0.458 
0.01 0.527 0.04 0.394 
0.02 0.497 0.0438 0.296 

TABLE 1 

The alternative gasdynamic model which may be studied is that of a piston- 
driven gasdynamic shock wave with no exothermal energy release at  the wave 
front. Thus, with Q = 0, we define Z = V and ?j = A2 so that the governing 
equation (3.4) then becomes 

which, under the boundary conditions Z = 2/(y + 1)) jj = 1, has the exact solution 

The section of the solution curve between 5 = 2 / (y+  1) and 5 = 1 is associated 
with the flow patterns of piston driven shock waves such that, since c,/c = i$ 

C 
where yp = (g)x=l, 

2 = 2(y + 1)-(~+1)1(2~) exp ( -  
C 

For y = # one finds c,/c = 0.554 which, for completeness has been included in 
table 1. In  a similar manner to that for the detonation wave the flow pattern may 
be presented functionally in terms of Z, jj as follows 

I, - (y2-1)Z2 r 
V* 2 ’ p* (y+l)fj(l-2)’ I,* 4 ( y Z - l ) ’  r* 
_ -  - (Y+1)@ p - - Y-1 - -  _ -  - g-4. 

The distributions of these quantities in the region between the piston and the 
shock wave are also shown in figure 2. 

For both shock and detonation waves, at  a fixed value of r/r* all the quantities 
v/vx, p/p*, p/p*  decrease as Q increases, whilst it is easy to show that the tem- 
perature ratio increases. At the piston face whilst the velocity and pressure are 
in general h i t e  non-zero, there the density becomes infinitely large and, in 
consequence, the temperature zero. This singular behaviour is not unexpected, 
since, in the ambient state p + co as r --f 0, which is the location of the piston face 
at  some initial instant. Furthermore, the velocity ratio and pressure ratio are 
fairly sensitive to the value of Q .  As has been already noted, to the maximum 
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value of Q corresponds the integral curve ( 8 ) - ( c )  of figure 1. Now from the ex- 
pression (5.6) it follows that the pressure is zero on y = 2/39 which curve passes 
through both singularities ( b )  and (c) and may also be shown to satisfy the govern- 
ing equation (5.1). Hence, for l/y < x < 1, the pressure falls to zero only at 
points lying on the integral curve (b)-(c),  being positive at points lying above. 
Consequently all solutions have non-zero pressure throughout, apart from that 
corresponding to this maximum value of Q,  for which the pressure falls to zero 
at the piston. In  all cases, immediately behind the wave front the pressure de- 
creases rapidly. This is in general agreement with a statement made by Stanyuko- 
vich ( 1960) regarding spherical and cylindrical detonation waves propagating 
into uniform media. 

6. Magnetogasdynamic detonation waves 
In  the case of a magnetogasdynamic detonation wave it has been seen that 

a = H and b = - Q. Thus the governing equation (3.4) for the flow behind this 
wave becomes 

where x = V ,  ZJ = h2/Q, h = H2,/&. (6.2) 

Clearly the parameter h can take all values between zero and infinity, although 
here we shall exclude the special cases Q = 0 and h = 0, the latter of which has 
been studied as a special gasdynamic case in Q 5. 

Two singularities of equation (6.1) lie at  the points 

(6.3) } 
(a) x = l/y, y = 0; 

( b )  x = I/?, Y = Y { 2(y - 1)2 + h}/(y - 1)2. 

Their nature is found to be independent of h; they correspond to a saddle point 
and a singluar node respectively. Further singularities are given by the points 
of intersection of the curves represented by the numerator and denominator of 
(6.1) equated separately to zero, viz. 

~ ( Y x -  1) [ ~ ( l  - ~ ) ~ - h ]  -y (y -  1) [( 1 - x ) ~  (x2y- 2) -x2h] = 0, (6.4) 

(7- 1) [(i - ~ ) 2  (x2y- 2) -xy(i - 4 3  = 0, (6.5) 

the first of these being the magneto-acoustic locus. It may be shown that there 
are no solutions of the simultaneous equations (6.4), (6.5) arising in the range 
0 < x < 1. Consequently the only singuIarity of (6.1) in this range are those al- 
ready defined in (6.3). 

From a study of the integral curves it is apparent, for all h, that as one passes 
along an integral curve in the sense of decreasing h starting from a point with 
x + l/y in 0 < x < 1 one must either pass through the singular point ( b )  and 
intersect the magneto-acoustic curve or intersect the latter directly. Neither of 
these possibilities offers a solution. Further on the integral curve x = l/y it is 
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clear from (3.6) that Pis infinite except at  the singularity (b) ,  so that no physically 
meaningful solution is offered in this case. Consequently one must conclude that 
no self-similar solution is possible for this problem; there is no possibility of a 
self-sustained Chapman-Jouguet detonation, nor of a detonation wave driven 
by a piston with uniform speed. Of course a solution may exist for a detonation 
wave of non-uniform speed driven by a variable speed piston, but such a solution 
would not be self similar and is beyond the scope of this investigation. 

7. Magnetogasdynamic shock waves 
In the case of a shock wave which propagates into a gas with perfect electrical 

conductivity one has b = 0 and a = HI.  Thus, if in equation (3.4) one sets 

x = V ,  y = h2/H2,, (7.1) 

the governing differential equation becomes 

Singularities of this equation occur a t  

(7.3) 

Of these (c) is not a simple singularity; the others have the following characters: 

(a) saddle, (b )  singular node, (d) saddle. 

(a) 2 = lfy, y = 0; (c)  X = 0, y = 0; 

( b )  x = q y ,  y = y2/(y- 1)2; (d)  5 = 0, y = 1. 

Further singularities may occur at  points which satisfy the equations 

y(y - l)$- 2yz+ 2 - y( 1 -z)2 [y(y + 1)xZ- 2(y+  1)X+ 21 = 0, (7.4) 

( y - l ) x -y ( l - x )2 (yx - l )  = 0, (7.5) 

of which, as usual, the former corresponds to the magneto-acoustic locus. Elimina- 
tion of y between these two equations leads to the cubic equation 

y(y- 1 ) ~ 3 +  (p- y+ 2 ) 9 -  2(y + 1 ) ~  + 2 = 0, 

which, for y = +, has one real root at  x = - 4.08. The singularity (e) associated 
with this root has the character of a spiral. 

The behaviour of the integral curves in the neighbourhood of the singularity 
(c)  may be determined from a consideration of the approximate form of (7.2) 
in the neighbourhood of this singularity, viz. 

This differential equation has the solution 
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where k is a constant, Therefore, for x positive 
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y N exp ( -  W ,  

so that all integral curves to the right of the singularity enter the origin where 
they are tangential to the x axis. Similarly, for x negative 

Y -1 / lX l  

and the nature of the singularity is saddle-like. The pattern of the full set of 
integral curves in the region of physical interest is shown in figure 3. 

FIGURE 3. Magnetogasdynamic shock wave : integral curves. 
--- , acoustic locus ;- - - , shock locus. 

Now in this instance, the value of V immediately behind the shock wave is 
derived from (4.1) as the smaller root of 

(y+  l ) V ' 2 - ( ( 3 + y - ~ H ~ ) V + 2 ( 1 - H ~ )  = 0. (7.6) 

Thus by eliminating H2, between (7.1) and (7.6) with h = 1, one finds that the 
initial point on a solution curve lies upon the curve 

y=-  (2 - YX) 

(1 -x) [2 - (y  + l)x]' (7.7) 
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which passes through the singularities ( b )  and ( d )  and has a vertical asymptote 
at x = 2/(y+ 1). This curve, the shock locus, is shown on figure 3 and for x > 1 /y  
lies above and for x < l / y  lies below, the unique integral curve with equation 

y ( l  -x)2 = 1, (7.8) 

which also passes through the singularities (b)  and (d). Thus to every value of 
x in the range 0 < x < 2 / (y+  1) there corresponds an acceptable initial point 
from which a solution curve passes into the singularity (c) at the origin. Con- 
sequently in no instance does there arise a piston-driven shock wave. 

In a detailed flow pattern the dimensionless field variables immediately 
behind the shock wave are obtained from (4.8)-(4.10) where, for given H,, 
V, = V(H,) is the appropriate root of (7.6). The dimensionless field variables at  
any point on a solution curve are obtained from the integrals (3.1), (3.2) and 
(3.3), and are given as functions of (x, y) by 

The quantities of particular interest are the ratios of the dimensional field vari- 
ables to their corresponding values immediately behind the shock wave, which, 
from the definitions (2.15) one may write in the forms 

- = H J  V “1 ,  ’- 1 P  p 1 2P - - 2 [ “1. (7.10) 
V* V, ,.-&[%I’ p”=m[z]’ H,Jy 

The temperature and total pressure ratios in the gas may also be written 

(7.11) 

Since H,Jy = h = r/r*, (7.12) 

these ratios may be conveniently obtained as functions of (r/r*), viz. the propor- 
tion of the distance from the axial current to the shock wave at any instant. 

For assigned H,, if from (7.6) the corresponding value of V, is such that V, < l / y  
then the complete solution may be obtained by following the appropriate 
integral curve into the singularity (c). However, if V, > lly, this integral curve 
en route for ( c )  necessarily passes through the singularity (b).  In  this case, to 
avoid the computational difficulty which arises in integrating through the 
singularity, the value of H, is no longer specified and in its place the slope, m, 
of the integral curve at (b)  is assigned. It is recalled that this value of m is bounded 
by the gradients a t  x = l / y  of the shock locus (7.7) and the curve (7.8) so that 

(7.13) 

Then from an integration in each direction from ( b )  the corresponding value of 
H, and the complete solution may be derived. In  the special instance when the 
initial point upon the shock locus itself coincides with the singularity (b)  from 
(7.1) and (7.3) the value of H, = (7- l)/y is known and hence, since from (4.10) 
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one has Pa = 1/2y2, it follows from the undetermined form (7.9) that the appro- 
priate value of the slope m is given by the upper bound of the inequality (7.13). 
Detailed computations have been carried out when y = 8 for various values of Hl. 
Presented in figures 4(a)-( f )  are the flow patterns associated with the following: 

( A )  Hl = 0.2, ( B )  Hl = 0.4, (C) ITl = 0.6, ( D )  Hl = 0.8. 

The shock point for each case is indicated upon figure 3 where it is observed 
that for (B)  it coincides with the singularity ( b ) .  

w 
a 3 0.5 

0.5 

r/r* 
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* 
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0.5 

r/r* 

FIGURE 4 (a). Magnetogasdynamic shock FIGURE 4 (b). Magnetogasdynamic shock 
wave: velocity distribution. A,  H ,  = 0.2; 
B, H ,  = 0.4; C, H ,  = 0.6; D, HI = 0-8. 

wave : density distribution. 

I 
0.5 0.5 

rlr * r/r* 

FIGURE 4 (c). Magnetogasdynamic shock 
wave : pressure distribution. 

FIGURE 4 (d). Magnetogasdynamic shock 
wave : magnetic field distribution. 
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It is noted that, for the smaller values of H,, the pressure falls behind the 
shock front before finally rising to an infinite value at the axis of symmetry, 
whilst at  any particular station, the pressure ratio increases with the value of HI. 
Furthermore, as HI+ 0, the shock point has co-ordinates x+ 2/(r + l), y+00 
and the appropriate integral curve tends to become coincident with the limiting 
curve given by (7.8). Thus, since the pressure is zero upon the latter, it follows 
that as HI+ 0, the pressure decreases to zero everywhere behind the shock wave. 

, 
0.5 

rlr* 

FIGURE 4 (e). Magnetogasdynamic shock FIGURE 4 (f). Magnetogasdynamic shock 
wave : total pressure distribution. wave : temperature distribution. 

As may be expected from the frozen flux relationship the curves of density 
and magnetic field variation have similar properties. In fact, from (7.10)-(7.12) 
t follows that &/2* = ( r / r * )  (p /p* ) .  For larger values of Hl at any fixed r / r * ,  
both ratios increase with H, in the same manner as the pressure, but for smaller 
HI it is observed that this trend is reversed in the region nearer the shock front 
and only becomes common for all H, sufficiently far behind the shock wave. 
An associated effect is shown by the velocity ratio, the reduction in which, 
at  any station, increases with the increase of Hl. 

It is observed further that, at  the axis of symmetry where there flows the line 
current the velocity falls to zero whilst the pressure, density, magnetic field and 
thus total pressure all rise to infinitely large values. The solution thus cannot be 
valid in the immediate vicinity of the axis, a fact which is emphasized by the 
result that there also the temperature falls sharply to  zero, a detail which is 
hardly consistent with the fundamental assumption that the gas remains per- 
fectly conducting throughout. 

Some of the above effects may be clarified by a consideration of the electric 
field, E, and the current density, j . These are given by the appropriate Maxwell's 

46-2 
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equation and may be written in the forms 

(7.14) 

where z is a unit vector parallel to the line of the axial current. Thus, the electric 
field, at  any time subsequent to the initial instant of propagation, is finite, vary- 
ing from zero at  the axis of symmetry to -p&Hl/t(l -&) at the wave front. 
Also if J is the total current flowing in the gas in a direction parallel to that of the 
central current then, following some algebraic reduction, 

whichis finite andpositive. However, from (7.14) we see that the sign ofthe current 
density depends upon the sign of dyldx. Flow patterns corresponding to large 
Hl with shock points such as D, C ,  B (see figure 3) are characterized by the fact 
that dy/dx is always positive, whilst those with small Hl and shock points such as 
A have dy/dx negative near the initial point on the solution curve but positive 
subsequently. Thus for small Hl the local current flow is parallel to the applied 
current near the axis, but antiparallel near the wave front. The value of HI = 

for which the current density does not change sign is given by f l =  y*) where y* 
is the ordinate of the point of intersection of the shock locus (7.7) and the locus 
of infinite slopes upon integral curves, viz. 

y =  - (Y - 1 ) X  

( l-x)2(yx-l) .  

In particular if Hl = H then the current density falls to zero at  the wave front. 
Finally, the Lorentz force acting upon the gas particles may be computed. 

For HI > H the current density is one signed and the Lorentz force thus acts 
towards the axis and served to dampen the flow. Alternatively if HI < H ,  
immediately behind the wave front the Lorentz force acts away from the axis 
and the motion is assisted, whilst near the axis the effects are reversed. Thus if we 
examine the solutions corresponding to cases B, C and D, for which Hl > H 
we note that the gas in these instances is subject to a force opposing any motion 
and increasing with Hl. This has the effect of restraining a greater mass of gas in 
the neighbourhood of the axis of symmetry, of reducing the gas velocity and in- 
creasing the total pressure with Hl. In  the case A the Lorentz force changes sense 
and thus is observed to reduce the total pressure in the gas as one moves in 
behind the wave front, but then as the sense changes and the force increases 
beyond bound, to boost the pressure to an infinite value at the axis. In this 
instance there arises a tendency to segregate the gas into two regions, one near 
the wave front, the other near the axis in which the rate of increase of the density 
is less at  the axis and greater at the wave front compared with the situation when 
Hl > H .  
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